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Abstract. The conductor-like screening model (COS-
MO) of solvation has been implemented in the Amster-
dam density functional program with maximum flexibility
in mind. Four cavity definitions have been incorporated.
Several iterative schemes have been tested for solving the
COSMO equations. The biconjugate gradient method
proves to be both robust and memory-conserving. The
interaction between the surface charges and the electron
density may be calculated by integrating over either the
fitted or exact density, or by calculating the molecular
potential. A disk-smearing algorithm is applied in the
former case to avoid singularities. Several self-consistent
field/COSMO coupling schemes were examined in an
attempt to reduce computational effort. A gradient-
preserving algorithm for removing outlying charge has
been implemented. Preliminary optimized radii are given.
Applications to the benzene oxide-oxepin valence taut-
omerization and to glycine conformation are presented.
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1 Introduction

The modeling of solvent effects in complex systems of
technological, geochemical and biological significance is
an important field of study. In the past several years, the
conductor-like screening model (COSMO) of Klamt and
Schiiirmann [1] has emerged as a promising tool for
efficiently treating these effects. The COSMO idea,
initially implemented in the MOPAC semiempirical
package, has subsequently been incorporated into DMol
[2], Gaussian 92 [3], GAMESS [4], Gaussian 94 [5],
MNDOY/d [6], and PAW. We present here our imple-
mentation [7] into the Amsterdam density functional
package (ADF) [8]. This COSMO implementation will
be included in future releases of the ADF package
(Scientific Computing and Modeling, Chemistry De-
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2 Theory and implementation
2.1 Dielectric continuum model of solvation

A molecule in solution may be regarded as being
situated in a cavity inside a dielectric continuum. The
charge distribution of the molecule, which consists of
the distribution due to the nuclear charges Zn at Ra,
Y A ZA0(r — Ra), as well as the electronic density —p(r),
will induce a charge density on the surface of the cavity,
ps(rs), where rg is a point on the surface. The total charge
induced will be opposite to the charge inside the cavity,
which should be approximately equal to the total solute
charge.

The electrostatic energy, formed from the interaction
between the solute and the surface charge and the self-
interaction of the surface charge, is given by
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The three terms of Eq. (1) represent the interaction of
the surface charges with the nuclear charge, the surface
charges (self-interaction), and the electron density,
respectively. In practice, the surface charge distribution
is approximated by a set of discrete point charges.

In addition to the electrostatic contribution, there is
also a nonelectrostatic contribution arising from cavi-
tation, dispersion and repulsion. These are usually
modeled as functions of the surface area of the cavity.
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2.2 Discretization of the cavity surface

In our implementation, the cavity may be constructed
as either van der Waals (vdW), solvent-accessible (SA),
solvent-excluding (SE) or Klamt [1] surfaces. The



GEPOL 93 program [9] is used to generate the first three
surfaces. We have slightly modified the GEPOL pro-
gram in order to generate the Klamt surface by a double
application of the SA algorithm, first adding the solvent
radius, which annihilates points near the cusp region,
and then subtracting the solvent radius, which projects
the surviving points on the original spheres.

The surface of each atom is discretized into 60 tri-
angles. After application of the GEPOL dlgorithm
the surviving triangles w111 possess a center B, surface
area SP and charge ¢®, and will be assomated with a
parent atom B. This ylelds for the solvation energy,
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In Eq. 2 a point-charge approximation is made for the
first two terms, representing the nuclear-surface and
surface-surface interactions. The third term represents
the electrostatic interaction within each segment [1]. The
final term represents the interaction between the elec-
tronic density and the surface, where the surface charge
has been distributed with a potential ¢, V(). We have not
specified the potential at this point for the the final term,
representing the electron density-surface interactions.
The electrostatic screening energy may then be written
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2.3 Solution of the COSMO equations

In COSMO, the surface charges vary in such a way as
to equalize the electrostatic potential over the cavity
surface, (or alternatively, by minimizing Ej), thus

dE®

i, zﬂ:A,ﬂq‘ + ZBA,,ZA +C, =0, (4)
or in matrix form, as

Ag=—(BZ+C) (5)
from which ¢ can be obtained as

g=-A"YBZ+C) . (6)

One can use Gauss—Jordan techniques [10] to solve the
linear systems, but since this equation must be solved at
each self-consistent-field (SCF) cycle (same A), it is more
efficient to invert the matrix and store 4~! externally;
however, for large systems, the storage of this matrix in
memory poses a significant challenge during the inver-
sion process and one must resort to other means. Our
initial attempt used a Gauss—Seidel iterative scheme [10],
but several cases were encountered in which this method
did not converge. We also implemented the Jacobi
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technique, and modified both of these techniques to
allow for relaxation (both under- and overrelaxation, to
allow for robustness and alacrity, respectively) [10];
however, in some cases, the charges diverged to infinity,
with the solvation energy decreasing without bound. The
lack of convergence stems from the lack of positive
definiteness of the A matrix in certain cases, which
causes these techniques to fail. Our solution to this
problem was to implement the preconditioned mini-
mum-residual biconjugate gradient technique [11] which
allows for an iterative solution for these problems.
The biconjugate gradient method is related to the
conjugate gradient method of minimizing a function
f(x) = 3xAx — bx but has the advantage that a positive
definite matrix is not required. Four methods are thus
available for solving these equations, with the biconju-
gate gradient method as the default.

At this point, we note that, if ¢ satisfies Eq. (6), then
the energy expression reduces to
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The COSMO equation is true only for a conductor.
For real solvents of dielectric constant ¢, the charges (or
alternatively, the energies and potentials) are scaled by

e—1

fe=— (8)
where x is an empirical parameter. In Klamt’s imple-
mentations [1, 2, 4, 12, 13], the value of 0.5 is chosen,
whereas other authors [3, 5] choose 0.0. For the high-
dielectric region, this choice makes no difference. We let
the user make this choice for maximum flexibility and
ease of comparison with published work, but set the
default to 0.0 to satisfy Gauss’ law.

2.4. Total energy expression
and the Kohn-Sham equations

The total Kohn-Sham (KS) energy, ET, for the com-
bined system of solute and induced surface charges
is obtained by adding E° (Eq. 3) to the gas-phase KS
energy expression

Z/tp Vz 1)dr,
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where {i;(1);i = 1,n} are the one-electron spin-orbitals,
and the electron density p is written as

D= g0,
=

The first term in Eq. (9) represents the kinetic energy of
a noninteracting model system with the same density as
the real interacting system. The second term represents
the nuclear-nuclear repulsion term, while the third term
gives the nuclear-electron attraction energy. The fourth
term, also known as the Hartree term, describes the
interaction of the electron density with itself. The final
term, the exchange correlation energy, contains all
additional terms, including the difference between the
kinetic energies of the model and real system. The KS
orbitals are determined to minimize the total energy,
which now includes the solvation term. This condition is
obeyed if the functions y;(1) satisfy the one-electron KS
equations

(10)

h()Y(1) = ey (1) (11)
under the orthonormality constraint
/lp l)dz =6 , (12)

where the one-electron KS operator 4(1) is given by

_T—I—ZVA+Zq,4 D+ Ve(l) + Ve . (13)
In Eq. (13),
T=-— %vz (14)
is the kinetic energy operator,
R =~ 2 (15)

is the nuclear-electron attraction operator due to
nucleus A,

n=3 [view

is the electrostatic potential from the total electronic
density p, and

OF
he =5 (17)

is the exchange-correlation potential.
To simplify the calculation of ¥, one introduces the
fitted density

= anfa(r2) (18)

into Eq. (16) to yield the fitted potential. The f, are
single-center Slater functions and the ¢, are determined
by a least-squares fitting procedure.

The operator differs from the gas-phase operator only
in the added external potential >_ ¢,7,(1) due to the

induced surface charges, where V(1) = -1

[ru—r[*

dr (16)
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2.5 Implementation of the KS equations
in the ADF program

The KS orbitals of Eq. (11) are expressed in the ADF
program as linear combinations of primitive Slater-type
spin-orbitals (STO) {y,(1); u = 1,2Mr} as

2MT
=Y dur(1) (19)
n=1
where the primitive STOs are given as
A1) = (51 = Xa)" (1 = Ya)" (21 — Za)"
x (Jr1 = Ra|)" exp[—aylr = Rallp(a1) . (20)

With the expansion of Eq. (19), the set of one-clectron
KS equations takes the form

WM,

3 [Fw _ si(S(L))U} Cy=0,1=1,2M, (21)
y=1

with the orthonormality condition becoming

M, 2M,

> Z )y = Oy (22)
y=1 1=

where the KS integral, F7,,
(S(z)),,» are defined as

FT”/ = //lj(l)h(l);ny(l)dﬂ

/i* d‘L’1

The matrix elements F;, are calculated in the ADF
program by numerical integration as

and the overlap integral,

(23)

(24)

Fy = Z W (i) 2 (ric) [RO(ric) + B (1) 2 (), (25)

where W (ry) is a weight associated with each integration
point 7;. The matrix S is calculated by analytical
integration. We note again the small modification of the
KS operator by the surface charge potential.

The results for a suite of small molecules, taken pri-
marily from Ref. [12], using the vdW, SE and Klamt
surfaces are given in Tables 1-4. Because of the coarse
discretization used, the sets of triangles corresponding to
the vdW and SE surfaces are often identical, and would
give exactly the same solvation energy. The vdW and
SE surfaces begin to differ for larger systems, with the
SE surface possessing a smaller solvation energy. The
Klamt surface always has the smallest solvation energy.
We prefer to use the SE surface because it possesses
neither cusps nor holes. Klamt has proposed a modifi-
cation to his original surface which also fills in these
holes [13].

2.6 Numerical integration grid and surface charges

The potential ¥, due to the surface charges is needed at
each numerical 1ntegrat10n point in order to evaluate the
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matrix element F;; of Eq. (25). It is also required if C,, of
Eq. 3 is evaluated as

Cu= Zk: Valri) p(ri) W (i), (26)

where 7, is an integration point and W(r) is its
associated weight.

In our implementation, the numerical integration grid
is chosen by the ADF program, whereas the surface
points are chosen independently by the GEPOL algo-
rithm. It is possible that a surface point may nearly
coincide with an integration point. In this case, repre-
senting the surface potential as a point charge would
result in numerical instability. To avoid this possibility,
we smear the charge uniformly on a disk of radius
RB centered on triangle u. The disk radius was initially
chosen such that it inscribes the triangle. The unit
charge potential associated with this smearing is given
[14] by

2 1
VHB =25 {1 u|Pr(cosw)| + = 3 Asz(cos )
1
1
~3 AMP4(cos )+ - ] A <1 (27)
and
2 _ l
VHB {2 /1# g 2Pz(cos )

1
+ 6/1!L5P4(cosw)
where A= (Rg)fl|r5‘ —r, and o is the angle be-
tween r — rE‘ and Rp — rE. P, is the nth order Legendre
polynomial.

Numerical experiments suggested that this problem
occurred rarely. Although the disk potential is accurate,
it is much more costly than using a point-charge model if
always used, so we have employed an adaptive strategy
to choose which pairs of points require a disk potential.
Our algorithm determines, given a pair of points, if the
point-charge model (calculated initially) and an ap-
proximate disk potential differ by a user-specified tol-
erance (default 0.01). If so, the algorithm determines the
number of terms in the expansion parameter / required
to guarantee the desired accuracy, up to a user-specified
maximum order (default 4), and calculates the resulting
disk potential. These pairs are then stored externally.
This approach reduces the computational costs by an
order of magnitude, and is only slightly more expensive
than using the point-charge model, which has also been
implemented. Another option for reducing expense is to
scale the size of the disk. A comparison of the effects of
changing the disk scaling and the potential tolerance is
given in Table 5. There is little change in the solvation
energy overall, but there is some variation with disk
scaling. Once the scaling factor exceeds 0.1, the com-
putational time increases dramatically. The solvation
energy, with the default scale of 0.01, does not vary with
extension of the potential tolerance, although the com-
putational time starts growing large if the tolerance is
smaller than 10~*. The defaults of 0.01 for the scale

}/1>1, (28)

Table 5. Effect of disk scaling and potential tolerance on HCI
calculation

Scale —log(tol) Number of 7 (s) E® E° (a.u.)
Special pairs (kcal/mol)

0.00 0 0 15.16 -5.113597 —0.22420528
0.01 2 0 15.57 -=5.113597 —0.22420528
0.1 2 58 16.35 —5.112736 —0.22420528
02 2 576 29.10 =5.103269 —0.22420671
03 2 2336 14530 -5.078991 -0.22421076
0.01 3 0 15.58 —5.113597 -0.22420528
0.01 4 58 16.35 -5.113588 —0.22420528
001 5 2784 192.89 —=5.113559 —0.22420529

factor and 0.01 for the potential tolerance are seen to
give a good balance between accuracy and efficiency.
In Eq. (26), p represents the electron density of the
solute. In our implementation, the user can choose
whether the exact density (Eq. 10) or the fitted density
(Eq. 18) is used. The fitted density usually takes less time
to evaluate. By integrating analytically over the elec-
tronic coordinate instead, the alternative expression

@:/:@r

is obtained, which is the molecular Coulomb potential at
ry. This potential can be evaluated from the fitted
density according to Eq. 18.

The solvation energies, evaluated using the three
different methods for calculating the C matrix (exact
density, fitted density and fitted potential), are given in
Table 6. For ionic species, the various methods are
within 2 kcal/mol of each other, whereas for neutral
species the agreement is much better at 0.2 kcal/mol.
Plots of processing time versus species for gas-phase
calculations and the three methods for C matrix evalu-
ation are shown in Fig. 1. It is clear that the fitted-
potential method cuts the extra time required to do
a solvation calculation by half compared to either the
fitted or exact density. This has been made the default.

dr = Ve(ry) (29)

2.7 SCF procedure modifications

The computation of the C matrix and the calculation of
the contribution of the surface charges to the Fock
operator add significant computational effort to each
cycle of the SCF. Several schemes were examined in an
attempt to reduce the computational effort. Table 7 shows
that the total solvation energy obtained from a post-SCF
approach is a reasonable estimate of the full variational
energy for neutral nonpolar compounds. For ions, the
results are within 2 kcal/mol of each other. The deviation
for neutral species increases with dipole moment. At-
tempts to improve variational calculations by turning on
the COSMO charges later in the SCF via several strategies
did not lead to improvement in processing time.

2.8 Outlying charge correction

In real quantum-mechanical systems, a significant port-
ion of the electron density will lie outside the cavity



Total electronic

Destabilization

0.22
0.03
2.58
0.08
0.19
0.00
0.00
1.13
0.02
1.44
2.05
0.80
2.71
0.38
0.13

—-0.69

—-103.69
-1.23

-100.14
-0.45
-0.43
-8.22
-0.77

-76.04
-6.72
-5.05

=79.17
-3.00
-2.50

=73.73

-73.96
-0.74

-103.91
-1.34

-100.12
-6.92
=522

—-79.89
-3.21
-2.94

-76.36

—-0.75

—-104.90
-1.35

-99.81
-0.50
—-0.49
-8.24
-0.87

-76.35
—-6.74

Electrostatic
-74.49
-5.11
-81.14
-2.99
-2.75

—0.639431
—-0.638696
—0.335053
—-0.572446
—0.111871
—0.341601
—-0.380286
—0.297965
—0.144090
—-0.297611
—-0.376574
—-0.224209
—0.284458
—0.158558
—-0.129917

—0.639434
—-0.638699
—-0.335036
—-0.572450
—0.111875
—0.341602
—-0.380287
—0.297956
—0.144087
—-0.297626
—-0.376569
—-0.224197
—0.284403
—-0.158549
—0.129893

—0.639432
—-0.638697
—-0.335101
—-0.572448
-0.111874
—-0.341603
—-0.380289
—-0.297974
—0.144088
—-0.297676
—-0.376679
—-0.224205
—0.284201
—-0.158616
—-0.129944

(p|H?) (a.u.)
Gas
-0.639784
—0.638750
-0.339213
-0.572583
-0.112180
—-0.341607
—0.380291
-0.299771
—0.144112
-0.299077
—0.379940
—0.225486
-0.288517
-0.159215
—-0.130153

4E: exact density, F: fitted density, P: fitted potential

Table 6. Diatomic test cases: C matrix®
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boundary, leading to the well-known problem of outly-
ing charge [12]. If we let Oy, be the total charge on the
molecule, then fo:lq# + Qtot 1s @ measure of the error in
Gauss’ law due to both the discretization and to outlying
charge. We may correct for both at once by adding the
constraint to the energy expression in Eq. 3 to form the
Lagrangian

M
L(g,0) =E@)+A[ Y qu+ Qo | - (30)
u=1

Setting the derivative of the Lagrangian with respect to
charge to zero gives

¢ = —A Y (BZ+ C+ A1) (31)
= —A'BZ+C) 47T (32)
— quncorr —|—)qu1, (33)

where T = [11...1]7. An explicit expression for 4 may be
garnished by ensuring that the constraint is satisfied,
which gives

M
uncorr
- Otor + E =19

A=
S,

The outlying-charge-correction formula depicted here
depends on the availability of 47!, which depends on
how the COSMO equations are solved. For the iterative
schemes, the unavailability of A~' may be remedied by
solving simultaneously both the COSMO equation and

the equation Ag; = 1. We note that ¢ = > A,
Alternatively, we extrapolate > g linearly from the cases
A=20,1 to determine A for which the error disappears.
Our implementation solves the COSMO equations first
for a conductor, including any correction for outlying
charge, and then scales the corrected charges by f/(e).
For a spherical cavity, this approach would be equiva-
lent to adding a constant charge to each (identical)
surface element. For a heteronuclear diatomic species in
which the atomic radii of the two atoms are equal, upon
separation to form ions, both atoms would possess the
same correction, since this depends only on the geom-
etry. We agree with Klamt and Jonas [12] that local
errors in the charges could result, since the anion would
be expected to have a greater outlying charge.

We note that Eq. 7 is no longer valid for the charge-
corrected case. A simple substitution gives

(34)

1 1. =

E® =3 (BZ+ C)q — Eiqu (35)
1 1,

=5(BZ+C)q+57Q0 (36)

where ¢ are the corrected charges. For neutral species, the
second term disappears, and the expression is the same.
Some of the results for the outlying charge correction
are presented in Table 7. Our scheme makes little differ-
ence to the solvation energy, but as expected, the mag-
nitude of the energy correction decreases in the order
anions > neutrals > cations. The default does not correct
for outlying charge because of the small size of the cor-
rection and because of the concern expressed above.
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Fig. 1. Timings for various C- 800 T
matrix calculation methods

700 | Gas Phase <—
Exact Density -+--
Fitted Density -8--
Potential -
600 |

500
z
AOE_) 400
300
200
100
0 ¥ ! | I
HCI CINS COocCI2 PSCI3 CF3CN CH3OCN CCI3CCI3
Table 7. Diatomic test cases: A
qutlying charge and perturba- Outlying charge corrected Perturb. Uncorrected
tional <,0‘Hq> (a.u.) ESS Edeslab Etot Etot Etot
CN~ —-0.639374 -73.96 0.26 -73.70 —-74.08 -74.27
N, —0.638698 -0.61 0.03 —-0.58 —0.68 -0.72
OH™ —-0.335056 —-104.57 2.61 -101.96 —-100.19 —-102.32
CO —0.572450 -1.15 0.08 -1.07 -1.18 -1.27
NO™ —0.111877 -99.76 0.19 —-99.57 -99.42 -99.62
0,('%)  -0.341603 -0.35 0.00 -0.35 -0.49 -0.50
0,CIT)  —0.380289 -0.33 0.00 —-0.33 —0.48 —-0.49
HF —-0.297972 -8.16 1.13 -7.03 —6.14 =7.11
F, —0.144087 -0.78 0.02 -0.76 -0.84 -0.85
SH™ —0.297553 -75.34 1.52 -73.82 -73.70 -7491
Cs —-0.376699 —-6.36 2.03 -4.33 -3.34 —4.69
HCI —-0.224212 —4.86 0.80 -4.06 -3.71 —4.31
OoCI” —0.284161 -80.17 2.73 —78.04 -76.70 —78.43
FCl —-0.158612 -2.80 0.38 -2.42 -2.27 -2.61
Cl, —0.129946 —2.46 0.13 -2.33 -2.46 -2.62
2.9 The energy gradient ((’)ET> _ (8E5> (38)
94, X,C 94, X,C

If we consider the energy as being £ = E(X, ¢, C), where
g and C are treated as implicit functions of X, then the
total derivative of the energy with respect to the nuclear
coordinate X, can be written as

-0, 556, ()
dXa \0Xn),c “4\0Cu)  \OXA),

i=1 u=1
OET )
AHNCAE
8% X,C OXa
The gas-phase terms of Eq. (37) require that we modify
the gas-phase one-particle KS operator by adding the

surface potential. The gas-phase energy E° does not
depend on charge explicitly, therefore

(37)

Since the COSMO equation ensures that this is zero
(Eq. 4), the final term of Eq. (37) disappears. The first
term is the sum of the explicit partial derivatives of the
gas-phase and solvation energies. The latter can be
written as

(39)



The first and second terms of Eq. (39) are readily calcu-
lated from the analytical expressions for 4,, and Ba, (as
given in Refs. [1] and [14]). The third term can be ob-
tained from numerical integration in a way similar to C,
itself. Because of the translational invariance condition,

ZaXfw p

the fourth term can be rewritten as
aVA (1)
> / 1
=2 Z Z 9y / ) XB

which can also be mtegrated numerically.

We would like to point out that taking the derivative
of the Lagrangian corresponding to constrained charges
(Eq. 30) affords exactly the same expressions for the
derivative, provided the corrected charges are used.

W,(1)dr =0, (40)

‘//i(l)df

Vﬂ (Dy,(Ddr (41)

2.10 Radii optimization

The construction of the various surfaces requires the
radii of specific atoms or atom types to be specified. The
expression of Truong and Stefanovich [3] was chosen
for the nonelectrostatic term. The molecules of Table 8
provided the test set for optimization. The radii obtained
are intended to be treated as preliminary values to be
refined later. All radii were optimized by least-squares
fitting on a grid with spacing 0.1 A . The experimental
values were taken from Table 2 of Ref. [16] and from
Table 4.1 of Ref. [6].

First, the H and C radii were optimized for hydro-
carbons. A uniform carbon radius of 2.4 A was initially
obtained. We found that the error was insensitive to the
hydrogen radius, so this value was fixed at 1.16 A.
Subsequently, sets of compounds including O, N, S and
P were examined separately to find radii for these ele-
ments and to possibly improve on the carbon radii. The
radii obtained from this procedure were C,; =23,
Cyr =22, O=13, N=14, S=1.7 and P=24(A).
Optimizations for other atoms, including the halogens, is
in progress. A comparison of experimental and calculated
solvation energies is given in Table 8. Approximately
70% of the values are within 1 kcal/mol of the experi-
mental result. The secondary and tertiary amines are the
largest outliers. The hydration energies of hydrocarbons
are systematically underestimated with these radii.

3 Applications
3.1 Benzene oxide — oxepin valence tautomerism

Considerable experimental and theoretical interest has
been given to the benzene oxide — oxepin and related
valence tautomerisms [17]. Four species are of interest
here: benzene oxide, oxepin, the transition state for
their interconversion (valence tautomerization) and the
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Table 8. Hydration energies (kcal/mol) with optimized radii

Expt Calc
Compounds containing H,C (C=2.4 A)
Methane 2.00 1.46
Ethane 1.83 1.54
Ethene 1.28 0.76
Ethyne -0.01 -0.47
Propane 1.96 1.58
Propyne -0.48 -0.43
Butane 2.08 1.56
1-Butyne —-0.16 -0.27
1-Butyn-3-ene 0.04 -0.49
Pentane 2.33 1.68
Benzene -0.90 -0.59
Methylbenzene -0.80 —0.68
Ethylbenzene -0.80 -0.54
Compounds containing O
Methanol =51 -3.97
Methanal -1.7 -2.48
Ethanol -5.0 —4.15
Ethanal -3.5 -3.71
Methyl methanoate -2.8 -3.09
Ethanoic acid -6.7 -6.01
Dimethyl ether -1.9 -1.12
2-Propanol -4.8 -4.53
Propanone -39 -3.93
Methyl ethanoate =33 -3.45
2-Pentanone -3.5 -3.91
4-Methyl-2-pentanone -3.1 -3.64
Phenol -6.6 —-6.95
Compounds containing N
Nitromethane -3.7 -4.43
Methylamine -4.57 -3.56
Dimethylamine —4.3 -2.13
Ethanamide -9.7 -10.32
Ethylamine -4.5 -3.67
cis-N-Methylethanamide -10.1 -8.56
trans-N-Methylethanamide -10.1 -8.58
Trimethylamine -3.2 0.88
Propylamine -4.4 -3.62
Diethylamine -4.1 -2.04
Butylamine —-4.4 -3.84
4-Methylpyridine -4.9 -4.82
3,5-Dimethylpyridine -5.5 -4.75
Compounds containing S
Methanethiol -1.2 -1.57
Dimethyl sulfide -1.5 -1.22
Ethanethiol -1.2 -1.92
Methyl ethyl sulfide -1.4 -1.32
Diethyl sulfide -14 —1.38
Compounds containing P
Phosphine 0.6 0.65

planar transition state for oxepin inversion. The struc-
tures and energies of these species can be found in
Tables 9 and 10 respectively, and a gas-phase reaction
profile is shown in Fig. 2 (without zero-point-energy
effects). The non-local (NL) energy of tautomerization
from oxepin to benzene oxide (0.2 kcal/mol) is reason-
ably close to the QCISD(T)/6-31G* value (—0.3 kcal/
mol). Predicting the correct sign when the values
are so close to zero is a very difficult task. The barriers
to tautomerization and to inversion are lower than both
the estimated experimental and the QCISD(T) values.
An experimental value of the difference in the free
energy of tautomerization (AAG) for two different
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Table 9. Benzene oxide—oxepin valence tautomerism: Z matrices

INTEGRATION 5.0 5.0 5.0

1. XX 0 0 0 0.0 0.0 0.0 0.00
2. XX 1 0 0 1.000000 0.0 0.0 0.00
3. C 1 2 0 CD 90.0000 0.0 1.63
4. C 1 2 3 CD 90.0000 180.0000 1.63
5. H 3 1 2 HIC1 HICID DHI1 1.18
6. H 4 1 2 HI1CI HI1CID -DHI 1.18
7. C 3 4 2 C2Cl1 C2CI1C6 0.0000 1.63
8. C 4 3 2 C2Cl1 C2CI1C6 0.0000 1.63
9. H 7 3 4 H2C2 H2C2Cl1 DH3 1.18
10. H 8 4 3 H2C2 H2C2Cl1 -DH3 1.18
11. C 7 3 4 C3C2 C3C2C1 DH4 1.63
12. C 8 4 3 C3C2 C3C2C1 -DH4 1.63
13. H 11 7 3 H3C3 H3C3C2 DH5 1.18
14. H 12 8 4 H3C3 H3C3C2 -DH5 1.18
15. o 2 1 3 OD2 OD2DI 90.0000 1.46
Benzene oxide Transition state Oxepin Planar oxepin®
LDA NL LDA NL LDA NL LDA NL
CD = 0.7129 0.7213 0.6943 0.7018 0.6765 0.6797 0.6666 0.6713
HICI = 1.0951 1.0916 1.0955 1.0918 1.0962 1.0926 1.0949 1.0913
C2Cl1 = 1.3494 1.3568 1.3851 1.3925 1.4272 1.4451 1.4525 1.4673
H2C2 = 1.0950 1.0915 1.0959 1.0924 1.0967 1.0932 1.0956 1.0923
c3C2 = 1.4416 1.4608 1.3779 1.3948 1.3366 1.3433 1.3297 1.3376
H3C3 = 1.0991 1.0947 1.0981 1.0934 1.0973 1.0924 1.0938 1.0894
OoD2 = 2.0755 2.1249 1.9966 2.0388 1.9696 2.0123 2.1205 2.1504
HICID = 118.26 118.24 117.63 117.70 118.14 118.28 118.37 118.38
C2CI1C6 = 121.41 121.46 122.24 122.25 123.99 124.33 125.72 125.99
H2C2Cl1 = 120.82 120.89 119.73 119.68 118.58 118.14 116.23 116.13
C3C2C1 = 120.37 120.54 121.78 122.02 124.05 124.80 130.77 130.56
H3C3C2 = 119.22 118.76 123.61 123.37 123.90 123.90 119.90 120.41
OD2DI = 134.86 136.77 130.16 131.45 135.00 137.52 N/A N/A
DHI1 = 171.01 172.43 165.92 166.36 171.91 172.90 180.0f 180.0f
DH3 = 165.30 167.53 148.99 150.62 146.67 148.01 180.0f 180.0f
DH4 = -13.06 -10.80 -25.25 -23.32 -31.43 -30.22 0.0f 0.0f
DH5 = 164.93 163.50 168.13 167.73 174.74 175.50 180.0f 180.0f
4 Different Z matrix
5. XX 2 1 1.000000 90.0000 90.0000 0.00
16. o 2 5 OoD2 90.0000 180.0000 1.46
atom numbers between [6-15] incremented by one. f = fixed
Table 10. Benzene oxide — Oxepin valence tautomerism: energies
(plH)
LDA NL €=1.95 e=72 E* E° pdest  pdest - plot E"
Benzene Oxide ~ —3.15003235 -2.90570874 —2.90509293  -2.90245196 -3.86 -9.90  0.39 2.04 -347 -7.86
Transition State —3.14323472  -2.89843559  -2.89785323 -2.89558836 -3.46 -8.70  0.37 1.79 -3.09 -691
Oxepin —3.14798464  -2.90606211 —2.90553833 -2.90359695 -3.30 -8.11  0.33 1.22 -297  -6.89
Planar —3.13891435 —2.89856774 —2.89825249  -2.89699446 -3.20 -7.47  0.20 0.79 -3.00 -6.68
solvent systems (isooctane, €=1.95; 15% aqueous solid state [23]. Glycine, the simplest amino acid,

methanol, e=72) can be estimated as 1.8 kcal/mol. Our
previous theoretical estimation [17] was 0.4 kcal/mol.
COSMO calculations were performed at the gas-phase
geometries to give a value of 1.0 kcal/mol, in much
better agreement with experiment.

3.2 Glycine structure in aqueous media

The structure of glycine in the gas phase [18-22] is very
different from the structure in aqueous solution or in the

possesses both an amino and a carboxylic acid group
in the gas phase, whereas in aqueous solution, the
favored structure is the result of a proton transfer from
the acid to the amine parts of the molecule.

Initially, microwave spectroscopy was only able to
identify the gas-phase conformer of glycine which had
the largest dipole moment (4.6 D), and thus the most
intense spectra [18, 19]. This conformer (1, shown in
Fig. 3) possesses an internal hydrogen bond between the
hydroxyl hydrogen and the nitrogen lone pair. Later, a
second conformer (2) was identified, possessing a dipole
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Fig. 2. Energy profile for benzene oxide—oxepin valence taut-
omerism

moment of 1.0 £0.15 D, and which is 1.4 + 0.4 kcal/
mol lower in energy [20, 21]. This conformer posseses
hydrogen bonds between the hydrogens of the amine
with the carbonyl oxygen. An electron diffraction study
is consistent with the identification of the lowest energy
conformer above [22], but identifies a third conformer
(3) as being next highest in energy, with hydrogen bonds
between the hydrogens of the amine and the hydroxyl
oxygen. The difference in enthalpy between the neutral
and zwitterionic forms (4) of glycine in aqueous solution
has been estimated as 9.9 kcal/mol [24].

There have been several COSMO investigations on
this interesting system [1, 2, 4, 15]. The energy differ-
ences between the two lowest gas-phase conformers are
calculated to be 3.3 and 1.1 kcal/mol, at the LDA/DZP
and BP/DZP levels, respectively, but the order is
reversed. The same trend was noted by other workers
[2], who obtained values of 2.5 and 0.3 kcal/mol,
respectively.

For an aqueous environment, we have calculated the
difference in the neutral and zwitterionic forms to be 9.4
kcal/mol (BP/DZP), in excellent agreement with the ex-
perimental estimate. Other workers have obtained simi-
lar values of 10.7 (LDA) and 8.7 (BP) [2], 7.0 (HF/
6-31G(2d,p)) [4] and 8.3 kcal/mol (AM1) [1]. The im-
portance of this example is that geometry optimization in
solution is required for the zwitterionic form of glycine,
because this structure does not exist in the gas phase.

4 Conclusions

The COSMO model of solvation has been implemented
in the ADF program. Several schemes for defining the
surface, solving the COSMO equations, C matrix
construction, and SCF convergence improvement have
been examined. A gradient-preserving algorithm for
removing outlying charge has been implemented. Pre-
liminary energy-optimized radii are given as H=1.16,
Cyp =23, Cpp=22, O=13, N=14, S=17 and
P=2.4. The majority of solvation energies calculated
with these radii are within 1 kcal/mol of experiment. The
difference in the enthalpy of tautomerization of benzene
oxide to oxepin between two solvent systems was
calculated to be 1.0 kcal/mol, in good agreement with
the experimental result of 1.7 kcal/mol. For the enthalpy
difference of neutral and zwitterionic forms of glycine in
aqueous solution, we obtained 9.4 kcal/mol, in excellent
agreement with the experimental estimate of 9.9 kcal/
mol.
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